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“Here growes the wine Pucinum, now called Prosecho, much cele-
brated by Pliny.” — Fynes Moryson, An Itinerary, 1617.

Abstract—We present PROSECCO, an algorithm for the pro-
gressive mining of frequent sequences from large transactional
datasets: it processes the dataset in blocks and outputs, after
having analyzed each block, a high-quality approximation of the
collection of frequent sequences. These intermediate results have
strong probabilistic approximation guarantees and the final out-
put is the exact collection of frequent sequences. Our correctness
analysis uses the Vapnik-Chervonenkis (VC) dimension, a key
concept from statistical learning theory.

The results of our experimental evaluation of PROSECCoO
on real and artificial datasets show that it produces fast-
converging high-quality results almost immediately. Its practical
performance is even better than what is guaranteed by the
theoretical analysis, and it can even be faster than existing state-
of-the-art non-progressive algorithms.

I. INTRODUCTION

Data exploration is one of the first steps of data analysis:
the user performs a preliminary study of the dataset to get
acquainted with it prior to performing deeper analysis. To be
useful, systems for data explorations must be inferactive: small
(500ms [1]) and large (6-12s [2]) delays between query and
response decrease the rate at which users discover insights.

Data exploration tools, such as Vizdom [3|], achieve inter-
activity by displaying intermediate results as soon as possible
after the query has been submitted, and frequently update them
as more data is processed, using online aggregation [4].

The intermediate results must be frustworthy, i.e., not mis-
lead the user, otherwise she will not be able to make informed
decisions. Specifically, /) they must be, with high probability,
high-quality approximations of the exact results; and 2) they
must quickly converge to the exact results, and correspond to
them once all data has been processed.

Online aggregation produces trustworthy intermediate re-
sults for relatively simple SQL queries, but does not currently
support more complex knowledge discovery tasks that are a
key part of data exploration.

Existing data mining algorithms are poor candidates for
this phase of data analysis. “Batch” algorithms that analyze
the whole dataset in one shot can take many minutes to
complete, thereby disrupting fluid user experiences. Streaming
algorithms often do not offer sufficient guarantees on the
quality of intermediate results for them to be trustworthy.
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In this work we focus on the important task of frequent
sequence mining (5|, [6], which requires finding ordered lists
of itemsets appearing in a large fraction of a dataset of
transactions. Applications include web log analysis, finance
modeling, and market basket analysis.

The bottom part of Figure [T] shows the lack of interactivity
of existing frequent sequence mining algorithms. After having
selected a dataset and a minimum frequency threshold to
deem a sequence frequent, the user launches a non-progressive
frequent sequence mining algorithm, such as PrefixSpan [6].
No response is given to the user until the algorithm has
terminated, which may take many tens of seconds. Such a
delay destroys the productivity of the data exploration session.
New algorithms are needed to ensure that the human is
involved in the loop of data analysis by providing actionable
information as frequently as possible.

Contributions: We describe PROSECCO, a progressive
frequent sequence mining algorithm with trustworthy inter-
mediate results, suitable for interactive data exploration.

o PROSECCO periodically returns to the user high-quality
approximations of the collection of interest (see the top
part of Figure [I). This progressive behavior is achieved
by analyzing the dataset incrementally in blocks of user-
specified size. PROSECCO extracts a set of candidate
frequent sequences from the first block by mining it at a
lowered frequency threshold that depends on properties
of the block. PROSECCO often returns the first set of
results after less than a second, therefore keeping the
user engaged in the data exploration process. The set of
candidates is guaranteed to be a superset of the exact
collection of frequent sequences. It is progressively re-
fined as more blocks are processed, with each refinement
output as an intermediate result. Once the last block
has been analyzed, the candidate sets corresponds to the
exact collection of frequent sequences. We also present
a variant PROSEK for extracting the fop-k most frequent
sequences.

o All the returned sets of candidate sequences come with
strong explicit probabilistic guarantees on their quality.
Such guarantees enable the user to decide whether to
continue or stop the processing of additional blocks. Our
analysis uses VC-dimension [[7]] and fundamental sample-
complexity results from statistical learning theory [§],
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Fig. 1: Illustration of an interactive data analysis tool where users can gesturally invoke a frequent sequences mining operation
(left) by selecting a dataset and a minimum frequency threshold. The feedback displayed by the tool to the user varies greatly
depending on whether a progressive or a non-progressive algorithm is used to compute the answer to such a query. In the
case of a non-progressive algorithm (bottom) the tool shows a loading animation until the exact answer is computed after 40
seconds. With PROSECCO, the tool can show (top) progressively-refined results to the user immediately and at various points
in time. Data and times for this example are taken from actual experiments.

[9]. We show that the empirical VC-dimension of the
task of frequent sequence mining is bounded above by a
characteristic quantity of the dataset, which we call the s-
index (Definition [2)), that can be computed in a streaming
fashion as the blocks are read (Algorithm [2).

« We conducted an extensive experimental evaluation of
PROSECCO on real and artificial datasets. Our results
show that PROSECCO produces approximations of the
actual set of frequent sequences almost immediately,
with even higher quality than our theoretical analysis
guarantees. Furthermore, PROSECCO uses several orders
of magnitude less memory when compared to the current
state-of-the-art sequent mining algorithm PrefixSpan [6],
and in some cases it is even faster.

II. RELATED WORK

Online aggregation [4]] is a paradigm in DBMS operations
where the user is presented with on-the-fly and constantly
updated results for aggregation queries. A number of sys-
tems [10]-[18] have been proposed over the years, with
increasing levels of sophistications and different trade-offs.
One major limitations of most of these systems is their focus
on SQL queries, and they do not cover knowledge discovery
tasks that are a major component of data exploration. We
focus on online aggregation for one knowledge discovery task:
frequent sequences mining.

Frequent sequences mining was introduced by Agrawal and
Srikant [S]. A number of exact algorithms for this task have
been proposed, ranging from multi-pass algorithms using the
anti-monotonicity property of the frequency function [19], to
prefix-based approaches [6]], to works focusing on the closed
frequent sequences [20]]. In this work, we consider these
algorithms as black-boxes, and we run them on blocks of the
dataset without any modification. None of them can work in
a progressive, interactive setting like the one we envision (see
Figure [T)) and in which PROSECCO shines. Additionally, they
use a very large amount of memory, while PROSECCO uses
an essentially constant amount of memory.

Streaming algorithms for frequent sequences mining [21]]
process the dataset in blocks, similarly to PROSECCoO. The
intermediate results they output are not trustworthy as they
may miss many of the “true” frequent sequences. This lim-
itation is due to the fact that the algorithms employ a fixed,
user-specified lower frequency threshold to mine the blocks.
This quantity is hard for the user to fix, and may may not be
small enough to ensure that all “true” frequent sequences are
included in each intermediate result. PROSECCO solves this
issue by using a variable, data-dependent lowered frequency
threshold, which offers strong guarantees.

The use of sampling to speed up the mining phase has been
successful in sequence mining [22] and in other variants of
pattern discovery, such as frequent itemsets mining [23[|-[25]],
to obtain approximations of the collection of interesting pat-
terns. We do not use sampling, but we use techniques based
on empirical VC-dimension to derive the lowered frequency
threshold at which to mine the frequent sequences. Our bound
to the empirical VC-dimension is specific to this task, and
we actually analyze the whole dataset, although in blocks of
transactions in random order, to obtain the exact collection of
frequent sequences.

III. PRELIMINARIES

Here are the concepts and results used throughout the paper.

A. Sequence mining

Let Z = {i1,...,in} be a finite set. The elements of 7
are called items and non-empty subsets of Z are known as
itemsets. A sequence s = (S1,Ss,...,Sy) is a finite ordered
list of itemsets, with S; CZ, 1 <i < /.

The length |s| of s is the number of itemsets in it, i.e.,
|s| = £. The item-length ||s|| of s is the sum of the sizes of
the itemsets in it, i.e.,

s]
s = SIS,
=1



where the size |.S;| of an itemset \S; is the number of items in
it (e.g., |{a,b,c}| =3).

A sequence a = (A, As,..., As) is a subsequence of
another sequence b = (By, By, ..., By,), denoted by a C b,
iff there exist integers 1 < j; < jo < ...j¢ < m such that
A CBj,A C Bj,,..., A4 C B,

The capacity c(s) of s is the number of distinct subse-
quences of s:

c(s)=[{aCs}|. (1)

The quantity 2/l — 1 is an upper bound to c(s). PROSECCO
uses a stronger upper bound introduced later.

A dataset D is a finite bag of sequences. When referring to
them as members of the dataset, the elements of D are known
as transactions. A sequence s belongs to a transaction 7 € D
iff s is a subsequence of 7.

For any sequence s, the frequency of s in D is the fraction
of transactions of D to which s belong:

_ {reD : sCT}
D '

For example, the following dataset D has five transactions:

({a}, {b,c}, {e,d;e})
{a}, {d; e}, {c,d})

<{b7 d7e}7{a7b}> (3)
(

(

fp(s) 2

{0} {c}, {d, e})
{a},{a, c}; {b})

The last transaction is a sequence with length |7| = 3. Its
item-length ||7|| is 4. Its capacity c(7) is 13 (not 2* — 1 =15
because there are two ways to get ({a}) and ({a}, {b})). While
the sequence ({a}) occurs twice as a subsequence of 7, 7 is
only counted once to compute the frequency of ({a}), which
is 4/5. The sequence ({a}, {b},{c}) is not a subsequence of
T because the order of the itemsets in the sequence matters.

Frequent sequences mining: Let S denote the set of all
sequences built with itemsets containing items from Z. Given
a minimum frequency threshold 6 € (0,1], the collection
FS(D, 6) of frequent sequences in D w.r.t. 6 contains all and
only the sequences with frequency at least 6 in D:

FS(D,0) = {s€S : fp(s) >0} .

We make heavy use of e-approximations of FS(D, ), for
€ € (0,1). Formally, they are defined as follows.

Definition 1: Let ¢ € (0,1). An e-approximation to
FS(D, 0) is a set BB of pairs (s, fs), where s € Sand fs € [0, 1],
with the following properties:

1) B contains a pair (s, f5) for every s € FS(D, 6);

2) B contains no pair (s, fs) such that fp(s) < 6 —¢;

3) Every (s, fs) € B is such that | fs — fp(s)] < e/2.

An e-approximation B is a superset of FS(D,0) (Property
1) and the “false positives” it contains, i.e., the sequences
appearing in a pair of B but not appearing in FS(D, 0), are
“almost” frequent, in the sense that their frequency in D cannot
be lower than 6§ — ¢ (Property 2). Additionally, the estimations

of the frequencies for the sequences in 5 are all simultaneously
up to &/2 far from their exact values (Property 3). We focus on
the absolute error but an extension to relative error is possible.

B. VC-dimension and sampling

The (empirical) Vapnik-Chervonenkis (VC) dimension [[7]
is a fundamental concept from statistical learning theory [9].
We give here the most basic definitions and results, tailored to
our settings, and refer the reader to the textbook by Shalev-
Shwartz and Ben-David [26] for a detailed presentation.

Let H be a finite discrete domain and R C 27 be a set
of subsets of H. We call the elements of R ranges, and call
(H,R) a rangeset. Given W C H, we say that A C W is
shattered by R if for every subset B C A of A, there is a
range Rp € R such that AN Rp = B, i.e., if

{RNA : ReR}=2".

The empirical VC-dimension ENC(H, R, W) of (H,R) on W
is the size of the largest subset of WV shattered by K.

For example, let H to be the integers from 0 to 100, and
let R be the collection of all sets of consecutive integers from
0 to 100, i.e.,

R={{a,a+1,...,b}

Let W be the set of integers from 10 to 25. The empirical
VC-dimension EVC(#H, R, W) of (H,R) on W is 2, because
for any set A = {a,b,c} with, wlo.g., a < b < ¢ of three
distinct integers in WV, it is impossible to find a range R in
R such that RN A = {a, ¢}, thus no such set of size three is
shattered by R, while it is trivial to shatter a set of size two.

In practice, the relative sizes of the ranges, i.e., the quantities

are unknown. One is interested in estimating all of them
simultaneously with guaranteed accuracy from a subset W of
¢ elements of the domain H. Let ¢ € (0,1). The set W is a
¢-sample iff

IRAW| IR

Wl H|

The use of the term ¢-sample to denote such a set is motivated
by the fact that if
1) W is a uniform random sample of ¢ elements from H;
and
2) we can compute an upper bound to the empirical VC-
dimension of (H,R) on W,
then we can obtain a value ¢ such that, with high probability
over the choice of W, W is a ¢-sample.
Theorem 1 ([8)]]): Let VW be a uniform random sample of ¢
elements from #, and let d > EVC(H, R, W). Let n € (0,1)
and

ca,beHsta<b} .

RER}

< ¢ forevery RER . 4)

_Jd+1In(1/n)

= 20 '
Then with probability at least 1 — 1 (over the choice of W),
W is a ¢-sample.



We use this theorem in the analysis of PROSECCO (see
Section [TV-C) to ensure that the intermediate results it outputs
have strong quality guarantees and converge to FS(D, 6).

IV. ALGORITHM

We now present PROSECCO, our progressive algorithm for
computing the set of frequent sequences in a dataset.

A. Intuition and Motivation

PROSECCO  processes the  dataset in  blocks
By,...,Bppj,) of b transactions eachﬂ, for a user-
specified b. After having analyzed the :-th block B, it
outputs an intermediate result, which is an €;-approximation
for an ; computed by PROSEcCo.

It is the combination of frequently-updated intermediate
results and their trustworthiness that enables interactive data
exploration: each intermediate result must be a high-quality ap-
proximation of the collection of frequent sequences, otherwise
the user is not able to decide whether to continue or interrupt
the processing of the data because the intermediate results have
already shown what they were interested in. Achieving this
goal is not straightforward. Streaming algorithms for frequent
sequence mining [21] use a fixed, user-specified, lowered
frequency threshold £ < € to mine all the blocks (the same & is
used for all blocks). This strategy is not sufficient to guarantee
trustworthy intermediate results, as they may not contain many
of the sequences that are frequent in the whole dataset, because
these sequences may have frequency in a block lower than &,
and therefore be missing from the intermediate result for that
block. Such results would mislead the user.

PROSECCO avoids these pitfalls by carefully mining the
initial block at a lowered frequency threshold ¢ < 6 computed
using information obtained from the blockE] By doing so,
the mined collection F of ‘“candidate” frequent sequences
is a superset of FS(D,0) (more specifically, it is an e-
approximation, for an € computed by PROSECCO0). PROSEC-
Co then refines the candidate set F using the additional
information obtained from mining each of the successive
blocks at a data-dependent, block-specific lowered frequency
threshold, improving the quality of the candidate set (i.e.,
decreasing ¢ progressively and including fewer false positives),
and eventually converging exactly to FS(D,0). Making the
lowered threshold & dynamic and dependent on block-specific
information computed by the algorithm enables PROSECCO
to output trustworthy intermediate results.

B. Algorithm description

We first need some preliminary definitions and results.

PROSECCO relies on a descriptive property of sets of
transactions which is a function of the distribution of the
capacities (see (I)) of the transactions in the sets. Obtaining
the exact capacity c(7) of a transaction 7 is expensive. We

I'With the possible exception of the last block, which may have fewer than
b transactions.
2Some additional care is needed when handling the initial block. See

Section

Algorithm 1: getCapBound: Compute ¢(7) > c(7).
input : transaction 7 = (A, ..., Ay), with the A;’s
labeled as described in the text.
output: upper bound ¢(7) to c(7).
&(r) « 27l —1
L+ 71 // Linked list
while |L| > 1 do
A < popFrontElement (L)
foreach B € L and s.t. B C A do
&(r) «&(r) — (2181 — 1)
erase B from L
return ¢(7)

X9 U AR W N -

instead compute an upper bound ¢(t) > c(7) as follows.
Consider the quantity 217 — 1 > ¢(7). This quantity may be
a loose upper bound because it is obtained by considering all
subsets of the bag-union U ¢ A of the itemsets in 7 as distinct
subsequences, but that may not be the case. For example, when
7 contains (among others) two itemsets A and B s.t. A C B,
sequences of the form s = (C) with C C A are considered
twice when obtaining 217l — 1, once as “generated” from A
and once from B. For example, the subsequence ({a}) can
be “generated” by both the first and the second itemset in the
last transaction from @ but it should not be counted twice.

Our goal in developing a better upper bound to c(7) is to
avoid over-counting the 2/4/ —1 sub-sequences of 7 in the form
of s above. At an intuitive level, this goal can be achieved by
ensuring that such subsequences are only counted once, i.e.,
as “generated” by the longest itemset that can generate them.

Formally, let 7 = (Z1, ..., Z;) be a transaction and assume
to re-label the itemsets in 7 by decreasing size, ties broken
arbitrarily, as Ay, ..., Ay, so that |A;| > |A4;4+1|- We compute
the upper bound &(7) as follows (pseudocode in Algorithm [I)).
First, ¢(7) is set to 2l7I — 1, then we put the A;’s in a list L
in the order of labeling. As long as the list L contains more
than one itemset, we pop the first itemset A from the list, and
look for any itemset B still in L such that B C A. For each
such B, we decrease ¢(7) by 2/%/ — 1 and remove B from L.
The following result is then straightforward.

Lemma 1: 1t holds that &(7) > c(7).

There are many other types of sub-sequences of 7 that
may be over-counted, but one has to strike the right trade-off
between the time it takes to identify the over-counted features
and the gain in the upper bound to the capacity. Investigating
better bounds to the capacity of a transaction that can still
be computed efficiently is an interesting direction for future
work.

Given a set W of transactions, we use the upper bounds
¢ to define a characteristic quantity of WV, which we call the
s-index of W.

Definition 2: Given a set VW of transactions, the s-index
of W is the largest integer d such that W/ contains at least
d transactions with upper bound ¢ to their capacities at least
2¢ — 1, and such that for any two distinct such transactions



of item-length at least d, neither is a subsequence (proper or
improper) of the other.

Consider, for example, the set of five transactions from (E])
It has s-index equal to 4 because the first four transactions have
¢ at least 2 — 1 = 15 (each 7 of them has &(7) = 217l — 1),
while the last transaction 7 has &(7) = 14.

Because of its use of ¢, the s-index is tailored for the task of
frequent sequence mining. It is in particular different from the
d-index of a transactional dataset used for frequent itemsets
mining [23].

Given W, an upper bound to its s-index d can be computed
in a streaming fashion as follows (pseudocode in Algorithm 2).
We start with d = 0 and increase it progressively by looking
at the transactions in YV one by one, maintaining the set T
of ¢ < d transactions with C greater than 24 _1and of d — ¢
transactions with ¢ exactly 2¢ — 1.

Algorithm 2: get SIndexBound
input : transaction set W
output: upper bound to the s-index of W.
17«0
2d<+1
3 foreach 7 € VW do
¢(7) + getCapBound (1) // See Alg.
if &(7) >2¢—1and —-3p € T s.t. 7 C p then
Z <+ Tu{r}
d <+ largest integer such that Z contains at
least d transactions of with ¢ at least 2¢ — 1
8 T < set of d transactions from Z with ¢ at
least 2¢ — 1
9 return d

N & B A

We are now ready to describe PROSECCo. Its pseudocode
is presented in Algorithm |3} PROSECCoO takes in input the
following parameters: a dataset D, a block size b € N,
a minimum frequency threshold 6 € (0,1], and a failure
probability ¢ € (0,1).

The algorithm processes the dataset D in blocks B, ..., Bg
where 8 = [|D|/b], of b transactions each analyzing the
dataset one block at a time. We assume to form the blocks
by reading the transactions in the dataset in an order chosen
uniformly at random, which can be achieved, e.g., using
randomized index traversal [27]. This requirement is crucial
for the correctness of the algorithm.

PROSECCO keeps two running quantities:

1) a descriptive quantity d which is an upper bound to the
s-index (see Definition [2) of the set of transactions seen
by the algorithm until now;

2) a set F of pairs (s, fs) where s is a sequence and fs €
(0,1].

The quantity d is initialized with an upper bound to the
s-index of Bj, computed in a streaming fashion using

3With the possible exception of the last block Brp| /b1, which may contain
fewer than b transactions. For ease of presentation, we assume that all the
blocks have size b.

getSIndexBound (Algorithm 2) as By is read (line [2] of
Algorithm [3). The second quantity F is populated with the
frequent sequences in B; w.r.t. a lowered minimum frequency
threshold £ = ¢ — § and their corresponding frequencies in B;
(lines [ and 5] of Algorithm [3). Any frequent sequence mining
algorithm, e.g., PrefixSpan [|6], can be used to obtain this set.
We explain the expression for ¢ (line [3) in Section [V-C|

After having analyzed B;, PROSECCO processes the re-
maining blocks Bs, ..., Bg. While reading each block B;, the
algorithm updates d appropriately so that d is an upper bound
to the s-index of the collection

w— s

j=1

of transactions in the blocks By, ..., B;. The updating of d
is straightforward thanks to the fact that get SIndexBound
(Algorithm [2) is a streaming algorithm, so by keeping in
memory the set 7 (line [§] of Algorithm it is possible
to update d as more transactions are read. At this point,
PROSECCO updates F in two steps (both implemented in the
function updateRunningSet, line [T1] of Algorithm [3) as
follows:

1) for each pair (s, fs) € F, PROSECCO updates fs as

- fs(l — 1)b+ |{7' € Bi :
-0
so that it is equal to the frequency of s in W,.
2) it removes from F all pairs (s, fs) s.t. fs < 0—5, where ¢
is computed using d as explained in Section When
processing the last block Bg, PROSECCO uses € = 0.

sC 1)
)

fs &)

No pairs are ever added to JF after the initial block B;
has been processed. The intuition behind removing some pairs
from F is that the corresponding sequences cannot have
frequency in D at least 6. We formalize this intuition in the
analysis in Section

After each block is processed, PROSECCO outputs an
intermediate result composed by the set F together with ¢

(line [I2] of Algorithm [3).

C. Correctness analysis

We show the following property of PROSECCO’s outputs.
Theorem 2: Let (F;, €;) be the i-th pair produced in output
by PROSECCO[| 1 < i < B. It holds that

Pr(3i,1 <i < §,s.t. F; is not an &;-approximation) < ¢ .

The theorem says that, with probability at least 1 — §
(over the runs of the algorithm), for every 1 < i < f,
each intermediate result F; is an ¢;-approximation, and since
eg = 0, the last result corresponds to the exact collection
FS(D,6).

Before proving the theorem we need some definitions and
preliminary results. Consider the range set (D, R), where R

4Ie., the i-th intermediate result.



Algorithm 3: PROSEcCo
input : dataset D, block size b, minimum frequency
threshold 6, failure probability d.
output: a set F which, with probability at least 1 — ¢,
equals FS(D, 0).
1 B« [|D|/b] // Number of blocks
2 (B1,d) + readBlockAndUpdateSIndex (b, i)
d—In(8)+In(B—1)

25
4 £+ 0—5 // Computes lowered threshold
5 F < getFs(By,{) // Computes FS(Bj¢)
¢ returnIntermediateResult (F,¢)
7 foreach i + 2,...,5—1 do
8 (Bi,d) —
readBlockAndUpdateSIndex (b, 1)

d—In(§)+In(S—1)
2i-b

3 e+ 2

9 €+ 2
10 E+0—35

1 F < updateRunningSet (F, B;, )

12 returnIntermediateResult (F,¢)

13 (Bg, s) < readBlockAndUpdateSIndex (b, )
14 F < updateRunningSet (F, Bg,0)

15 return (F,0)

contains, for each sequence s € S, one set Rg defined as the

set of transactions of D that s belongs to:
Rs={reD :sCTt} . (6)

From it is easy to see that for any sequence s € S, the
relative size of the range Rg equals the frequency of s in D:

| Rs|
=fp(s) . (7N
D
Given a subset W of D, it holds that
|Rs N W]
— =f(s) . ®)

Lemma 2: Let W be a subset of D that is a ¢-sample of
(D,R) for some ¢ € (0,1). Then the set

B ={(s,fw(s)) : se€FSOW,0 — ¢)}

is a 2¢-approximation for FS(D, 0).

Proof: Property 3 from Definition |I| follows immediately
from the definition of ¢-sample (see (@) and from (7) and (8,
as for every sequence s in S (not just those in the first
components of the pairs in B) it holds that

fw(s) —fo(s)[ < ¢ .

Property 1 from Definition [I] follows from the fact that any
sequence s € FS(D, ) has frequency in W greater than 6 — ¢,
so the pair (s, fyy(s)) is in B.

Finally, Property 2 from Definition [T| follows from the fact
that any sequence s with frequency in D strictly smaller than
0 — 2¢ has frequency in W strictly smaller than 6 — ¢, so the
pair (s,fy(s)) is not in B. [ |

The following lemma connects the task of frequent sequence
mining with the concepts from statistical learning theory.

Lemma 3: For any subset YW C D of transactions of D,
the s-index d of W is an upper bound to the empirical VC-
dimension of (D, R) on W: d < EVC(D, R, W).

Proof: Assume that there is a subset S C W of z > d
transactions shattered by R. From the definition of d, S must
contain a transaction 7 of with &(7) < 2¢—1. The transaction 7
belongs to 2%~ subsets of S. We label these subsets arbitrarily
as A;, 1 <i<2*7! Since S is shattered by R, for each A;
there must be a range R; € R such that

A, =SNR;,foreach 1 <i<2*! .

Since all the A;’s are different, so must be the R;’s. The
transaction 7 belongs to every A; so it must belong to every
R; as well. From the definition of R, there must be, for every
1 <4 < 2°7% a sequence s; such that R; = Rs, (see (6)).
Thus, all the s;’s must be different. From @) it holds that 7
belongs to all and only the ranges Rq such that q C 7. Since
¢(r) < 24 _1, it follows from Lemma that there are at most
2¢ — 1 distinct non-empty sequences that are subsequences of
7. But from the definition of z it holds that 251 > 2¢ — 1,
so 7 cannot belong to all the ranges Rs,, thus we reach a
contradiction, and it is impossible that S is shattered. ]
We conjecture that the bound is tight, i.e., that it is possible
to build a dataset D and a set VW C D such that the empirical
VC-dimension on W equals the s-index of W.

Proof of Theorem Recall that W; = UJ;_, B; is the
set of transactions seen by PROSECCO up to the point that
(Fi, 1) is sent in output. The number of transactions in W is
[W;| = b-i. For any 4, 1 < ¢ < § and for any pair (s, fs) € F;,
it holds that

fs = fw, (s) 9
by definition of fs (see (3)). Consider the event
E = “Every W;, 1 <i < [ is an g;/2-sample”

and let E be its complementary event. Using the union bound,
we can write
B—1
Pr(E) < Z Pr(W; is not a ¢;/2-sample) .

i=1

(10)

By construction, each W; is an uniform random sample of D
of size b-4, 1 <1 < (. The fact that W; C W, for z > i is
irrelevant, because of the definition of uniform random sample.
Using Lemma [3] Theorem [I] and the definition of &; (from
lines [3] and [9] of Algorithm [3), it holds that

Pr(W; is not a ¢;/2-sample) ,for1<i<p .

<
=571
Plugging the above in (I0), it follows that the event E then
happens with probability at least 1 — §. When E happens, the
thesis follows from Lemma [2] for all 1 <7 < /8 and from ()
for i = . [ |



D. Handling the initial block

A major goal for PROSECCO is to be interactive. Inter-
activity requires to present the first intermediate results to the
user as soon as possible. As described above, PROSECCO uses
an exact, non-progressive algorithm such as PrefixSpan [6]] to
mine the first block with a frequency threshold £ (line @] of
Algorithm [3). Because of the way & is computed, it could be
very small, depending on the (upper bound to the) s-index of
the first block and on the user-specified block size b. Mining
the first block at a very low frequency threshold has two
undesirable effects:

1) the mining may take a long time due to the very large
number of patterns that are deemed frequent w.r.t. a very
low threshold (pattern explosion);

2) all these patterns would be shown to the user, effectively
flooding them with too much information with diminish-
ing return.

To counteract these drawbacks, the algorithm can hold before
mining the first block if the frequency threshold £ is too low,
and instead continue on to read the second block (without
discarding the first) and potentially additional blocks until the
frequency threshold ¢ computed using the upper bound to the
s-index and the size of the set of all read transactions is large
enough for this set of transactions to be mined quickly by
PrefixSpan at this threshold. Doing so has no effect on the
correctness of the algorithm: the proof of Theorem [2] can
be amended to take this change into consideration. A good
starting point for how large ¢ should be before mining is to
wait until it is approximately 6/2. Other heuristics are possible
and we are investigating a cost-model-based optimizer for the
mining step to determine when ¢ is large enough.

E. Top-k Sequence Mining

A variant of the frequent sequence mining task requires to
find the fop-k most frequent sequences: instead of specifying
the minimum frequency threshold 6, the user specifies a
desired output size k. The collection of sequence to return
is defined as follows. Assume to sort the sequences in S
according to their frequency in D, ties broken arbitrarily. Let
fgC ) be the frequency in D of the k-th sequence in this order.
The set of top-k frequent sequences is the set

TOPK(D, k) ={s€S : fp(s) >} .

This collection may contain more than k sequences. The use of
k as a parameter in place of the minimum frequency threshold
6 is often more intuitive for the user and more appropriate for
interactive visualization tools, where the human user can only
handle a limited number of output sequences.
Since
TOPK(D, k) = FS(D, f%)

the concept of e-approximation (Definition [I)) is valid also for
this collection.

PROSECCO can be modified as follows to return progressive
results for the top-k frequent sequences. We denote this
modified algorithm as PROSEK, and in the following describe

how it differs from PROSECCO by referencing the pseudocode
in Algorithm [3]

First of all, PROSEK takes k as input parameter instead of
6. A major difference is in the definition of ¢ on lines [3] and [9]
of Algorithm [3] PROSEK uses a factor 4 (instead of 2) before
the square root to compute the values for this variable:

-1 In(B—1
EHW @) +m@F-1)
2i-b
Another difference is in the initialization of ¢ (line [): instead
of 6, PROSEK uses fj(gkl), the frequency in Bj of the k-th most
frequent sequence in Bj:

k S
§ + fj(gl) —3 -

The quantity fj(gkl) can be computed using a straightforward
variant of PrefixSpan for top-k frequent sequence mining. The
last difference between PROSECCO and PROSEK is in the
function updateRunningSet: while the second component
of the pairs in F is still updated using (5), PROSEK removes
from F all pairs with updated second component strictly less
than f%z — 5, the frequency of the k-th most frequent sequence
in Wl

The output of PROSEK has the following properties.

Theorem 3: Let (F;,¢;) be the i-th pair sent in output by
PROSEK, 1 < i < 3. With probability at least 1 — 4, it holds
that, for all 4, F; is an ¢;-approximation to TOPK(D, k).

The proof follows essentially the same steps as the one for
Theorem 21

F. Discussion

We now comment on some important aspects of PROSEC-
Co, including how to make it even more efficient in practice.
Memory considerations: ~Many current real-world
datasets contain hundreds of millions of transactions. As a
result, such datasets are impractical to store, let alone mine,
locally on a single machine. Most existing algorithms are
ill-suited for mining large datasets as they require enormous
amounts of memory (usually ranging in the GigaBytes, see
also Section [V-C), even with relatively small datasets by
today’s standards. Existing workarounds involve expensive
disk I/O operations to store and fetch from disk what does
not fit into memory, leading to extreme runtime inefficiencies
far beyond what can be tolerated in an interactive setting.
Thanks to the fact that PROSECCO only mines one block
at a time, it incurs in minimal memory overhead, making it
an ideal candidate for mining very large datasets (see also the
results of our experimental evaluation in Section [V-C)). Fur-
thermore, this small resource footprint means that PROSECCO
can be used in low-memory settings without the need for
expensive I/O swapping operations effectively bypassing the
runtime increase faced by existing algorithms. We believe this
is a major benefit of PROSECCoO, given the impracticality of
using existing sequence mining algorithms on huge sequence
datasets.
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Fig. 2: Precision and Recall evolution as more blocks are processed.

V. EXPERIMENTAL EVALUATION

In this section we report the results of our experimental
evaluation of PROSECCO on multiple datasets.
The goals of the evaluation are the following:

o Assess the accuracy of PROSECCO in terms of:

1) the precision and the recall of the intermediate results,
and how these quantities change over time as more
blocks are processed;

2) the error in the estimations of the frequencies of the
output sequences, and its behavior over time. Addi-
tionally, we compare the actual maximum frequency
error obtained with its theoretical upper bound ¢; that
is output after having processed the i-th block.

« Measure the running time of PROSECCO both in terms of
the time needed to produce the first intermediate result,
the successive ones, and the last one. We also compare
the latter with the running time of PrefixSpan [6].

« Evaluate the memory usage of PROSECCO over time and
compare it with that of PrefixSpan, especially as function
of the size of the dataset.

Implementation and Environment: We implement
PROSECCO and PrefixSpan in C#. Our implementation of
PROSECCO uses PrefixSpan as the black-box non-progressive
algorithm to mine the first set F from the initial block (line [3]
of Algorithm [3) and for updating this set when processing the

successive blocks (line [TT). Our open-source implementation
can be found at https://github.com/sachaservan/prosecco,

All experiments are conducted on a machine with Intel(R)
Xeon(R) CPU E5-2660 v2 @ 2.20GHz processors and 256GB
of RAM, running Ubuntu 16.04 LTS. Unless otherwise stated,
each result is the average over five trial runs (for each
combination of parameters). In most cases the variance across
runs was minimal, but we also report 95%-confidence regions
(under a normal approximation assumption). These regions are
shown in the figures as a shaded areas around the curves.

Datasets: We used five sequence mining datasets from
the SPMF Data Mining Repository [2§].

« Accidents: Dataset of (anonymized) traffic accidents;

« Bible: Conversion of the Bible into a sequence dataset
where each word is an item;

o BMSWebViewl: Click-stream dataset from the Gazelle
e-commerce website;

o FIFA: Click-stream dataset of the FIFA World Cup ‘98
website. Each item represents a web page;

« Kosarak: Click-stream dataset from a Hungarian on-line
news portal;


https://github.com/sachaservan/prosecco

0.025 —— Mean

* Max
== Theoretical

— Mean 0.03

= Max

I
]
0.020
|| == Theoretical
\
\

|
1
)
I
002 |
1
1
001 1

i\
0005 PN

000 (_' e e e = = —— )
0 50 100 150 0 200 400
Block

(b) Bible, § = 0.4

Absolute Error
o o
o o
2 =
5 o
Absolute Error

0.000

(a) Accidents, # = 0.8

i oo 0.025

\
0015 1y seee o Max
== Theoretical

= Mean
+ Max

I

1
0.020
ll == Theoretical
\

0.015

o
o
=
o
e

0010

Absolute Error
7
Absolute Error

o
o
=1
=]

-

0005 & -~

- 0.000
0 50 100 0 50 100 150
Block

(e) Kosarak, 8 = 0.05 (f) Accidents, 6§ = 0.9
Il = Mean
003 | ceer Max
| == Theoretical
002

Absolute Error

0.00

0 25 50 75 100
Block

(i) FIFA, 0 = 0.4

Fig. 3: Absolute error in the frequency estimation

The characteristics of the datasets are reported in Table [} To
make the datasets more representative of the huge datasets that
are frequently available in company environments (and sadly
not publicly available), we replicate each dataset a number
of times (between 5 and 100). The replication preserves the
original distribution of sequence frequencies and transaction
lengths, so it does not advantage PROSECCO in any way, nor
disadvantages any other sequence mining algorithm.

TABLE I: Dataset characteristics

Repl. Avg. trans.
Dataset Size (|D|)  Factor |Z] size
Accidents 1700915 5% 481 34.8
Bible 5455350 200x 14442 22.6
BMS-WebView1 5960001 100x 938 35
FIFA 1022500 50x 4153 37.2
Kosarak 1249951 50x 16428 9.0

Parameters: We test PROSECCO using a number of
different minimum frequency thresholds on each dataset. We
report, for each dataset, the results for two thresholds. We vary
the frequency thresholds across the datasets due to the unique
characteristics of each dataset, using thresholds which produce
an amount of frequent sequences likely to be of interest in an
interactive setting (less than 500 sequences in the final output).

We set § = 0.05 and do not vary the value of this parameter
because the algorithm has only a limited logarithmic (and
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and its evolution as more blocks are processed.

under square root) dependency on it. We also use a constant
block size b = 10,000 transactions unless stated otherwise.
This value was found to guarantee the best interactivity (see
also Section [V-B] for a comparison of different blocks sizes).

A. Accuracy

We measure the accuracy of PROSECCO in terms of recall,
precision and frequency error of the collection of sequences
output in each intermediate result. Figure 2] shows the results
for recall and precision, while Figure [3|and Figure [] show the
ones for the frequency errors.

Recall: The first result, which is common to all the
experiments conducted, is that the final output of PROSECCO
always contains the exact collection of frequent sequences,
not just with probability 1 — § which is what our theoretical
analysis guarantees. In other words, the recall of our algorithm
at the final iteration is always 1.0 in practice. Furthermore, in
all our experiments, the recall of each intermediate result is
also 1.0. In summary, we can say that PROSECCO always
produces intermediate results that are supersets of FS(D, 6).

Precision: PROSECCO does not offer guarantees in terms
of the precision: it only guarantees that any sequence much
less frequent than the user-specified minimum threshold 6
would never be included in any intermediate result (see
Property 2 of Definition [T). This property is very strong but
does not prevent false positives from occurring. We can see
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Fig. 4: Relative percentage error in the frequency estimation and its evolution as more blocks are processed.

from the results in Figure 2] that the precision after having
processed the first block is around 0.20 for some datasets, but
it can be much higher (0.6-0.8) or even perfect . It rapidly
increases in all cases as more blocks are analyzed. Due to
the randomized nature of the algorithm, different runs of
PROSECCO may perform slightly differently (shaded region
around the precision curve) but still show relatively high
precision across the board. The precision tends to plateau
after a few blocks: this effect is due to the fact that, before
having process the whole dataset, it is hard for the algorithm
to discard from the set F the sequences with a frequency in
D just slightly lower than 6. Only after the last block has
been analyzed it becomes evident that these sequences do not
belong to FS(D, 0) and they can be safely expunged from F.
Indeed the final output is always exactly FS(D,#), i.e., the
precision of the final output is 1.0.

Frequency Error: We measure the error in the estimation
of the frequencies in each progressive output in two ways:

o absolute error: the absolute value of the difference be-
tween the estimation and the true frequency in D.

o relative percentage error (RPE): we divide the absolute
error by the true frequency in D, and multiply the result
by 100 to obtain a percentage.

Results for the absolute error are reported in Figure [3] and
those for the relative percentage error are in Figure []

Beginning with the absolute error, we can see from the
plots that on average over the sequences in the intermediate
results for each block, the error is very small (never more
than 0.0025) and quickly converges to zero. The error goes
to exactly zero after the algorithm has processed the last
block. The results are very stable across runs (small or absent
shaded region). Even the maximum error is only slightly larger
than the mean. We also report the theoretical upper bound
to the maximum error, i.e., the quantity &; that is output
by PROSECCO after each block has been processed. This
quantity is zero after having processed the last block (the
single point is not clearly visible in some of the figures). We
can see that this bound is larger than the actual maximum
error observed, which confirms our theoretical analysis. The
fact that at times the bound is significantly larger than the
observed error is due to the looseness of the large-deviation
bounds used (Theorem [I) and that PROSECCO computes an
upper-bound to the s-index which in turn is an upper-bound
to the empirical VC-dimension, itself a worst-case quantity.
In the near future, we plan to explore better bounds for the
empirical VC-dimension and the use of improved results from
statistical learning theory to study the large deviations.

In terms of the RPE, PROSECCO does not give any guaran-
tees on this quantity (although extensions of PROSECCO that
offer guarantees on the RPE are possible). Nevertheless, Fig-



ure [4] shows that the RPE is generally small, and it converges
rapidly to zero. The fact that PROSECCO behaves well even
with respect to a measure which it was not designed to take
into consideration testifies to its great practical usefulness.

B. Runtime

We measure the time it takes for PROSECCO to produce
each intermediate result, and compare its completion time with
that of PrefixSpan.

Our experiments show (Figures [5] and [6) that PROSECCO
provides a progressive output every few seconds (sometimes
even milliseconds) producing many incrementally converging
and useful results before PrefixSpan completes. The variability
in the processing time of a block is due to the slightly different
thresholds used to mine different blocks. Processing the last
block tends to take much less time than analyzing the others
because it is usually contains many fewer than b transactions.

We experimented with four different block sizes to analyze
the overall effect that block size has on PROSECCO’s perfor-
mance. We stress that the block size only has an effect on the
runtime required to produce an incremental output but does
not impact the correctness of PROSECCoO. Figure [3] displays
the variation in the time required to produce an incremental
output as a function of # and the block size b. As expected,
our experiments show that larger values of b increase the time
required per progressive output since each block contains more
transactions.

Furthermore, the results suggest that using a “small” block
size has the advantage of producing more incremental results,
however, using too small a value for b can lead to higher
values of ¢ when mining the blocks which may slow-down
overall performance due to the pattern-explosion phenomena
at lowered frequency thresholds.

The overall runtime of PROSECCO is almost identical to
(and often faster than) the runtime of PrefixSpan (Figure [6).
At times PROSECCO is slower, but we stress that it has been
producing high-quality trustworthy results every few seconds,
regardless of the overall size of the dataset, while PrefixSpan
may require several minutes or more to produce any output.

We break down the total runtime into fractions for the major
steps of the algorithm. We report the average percentage of
time (relative to the total) for each step across all six datasets.

o 54% (standard deviation: 22% ) of the overall runtime
is spent reading and parsing the blocks. This step is so
expensive because the algorithm must parse each row of
the sequence dataset and convert it into an instance of
a sequence object in our implementation. This step is
not specific to PROSECCO and was equally slow in our
PrefixSpan implementation.

e 9.5% (standard deviation: 5.5%) of the runtime was
dedicated to updating the s-index as well as sorting and
pruning the parsed sequences. After the initial block is
processed, the algorithm sorts and prunes each sequence
based on the items in the running set F. Doing so allows
for a more efficient frequent sequence extraction (see
the next step) since the pruned sequences are guaranteed

to only contain items which are part of a frequent
sequence and it avoids computing the item frequencies
from scratch.

e 36.4% (standard deviation: 25%) of the total runtime
involved obtaining the frequent sequences using PrefixS-
pan. We note that without the previous pruning step, this
process would incur a much more significant overhead
since the individual item frequencies would need to be
computed and the sequences pruned and sorted accord-

ingly.
C. Memory Usage

We measure the memory usage over time for both PRO-
SECCO and PrefixSpan. Our results (Figure [7) show that
PROSECCO uses a constant amount of memory, approximately
100 to 800MB, regardless of the size of the dataset, while
PrefixSpan requires a linear amount of memory which, in
some experiments, exceeded 21 GigaBytes. In fact, we were
unable to accurately compare performance for several very
large datasets which required over 40 GigaBytes of memory to
evaluate using existing algorithms, however, we had no issues
obtaining results from PROSECCO which always required
less than 1 GigaByte of memory. Such huge difference of
many orders of magnitude clearly shows the advantage of
using PROSECCO over classical sequence mining algorithms,
especially as datasets get larger and more complex.

VI. CONCLUSIONS

We present PROSECCO, an algorithm for progressive min-
ing of frequent sequences from large transactional datasets.
PROSECCO periodically outputs intermediate results that are
approximations of the collection FS(D,6) of frequent se-
quences, with increasingly high quality. Once all the dataset
has been processed, the last result is exactly FS(D, 6).

Each returned approximation comes with strong theoretical
guarantees. The analysis uses VC-dimension, a key concept
from statistical learning theory.

Our experimental results show that PROSECCO outputs
a high-quality approximation to the collection of frequent
sequences after less than a second, while non-progressive al-
gorithms would take tens of seconds. This first approximation
is refined as more blocks of the dataset are processed, and the
error progressively and quickly decreases.

Among interesting directions for future work, we highlight
the need for progressive algorithms for many other knowledge
discovery problems, with the goal of making interactive data
exploration a reality for more and more complex tasks.
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