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ABSTRACT
The goal of a visualization system is to facilitate data-driven
insight discovery. But what if the insights are spurious? Fea-
tures or patterns in visualizations can be perceived as relevant
insights, even though they may arise from noise. We often
compare visualizations to a mental image of what we are inter-
ested in: a particular trend, distribution or an unusual pattern.
As more visualizations are examined and more comparisons
are made, the probability of discovering spurious insights
increases. This problem is well-known in Statistics as the mul-
tiple comparisons problem (MCP) but overlooked in visual
analysis. We present a way to evaluate MCP in visualization
tools by measuring the accuracy of user reported insights on
synthetic datasets with known ground truth labels. In our ex-
periment, over 60% of user insights were false. We show how
a confirmatory analysis approach that accounts for all visual
comparisons, insights and non-insights, can achieve similar
results as one that requires a validation dataset.
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INTRODUCTION
Here is a thought experiment. Imagine a game where you roll
a pair of dice and win if you get two sixes. The probability
of winning is 1/36. Now let’s change the game mechanics.
Instead of just rolling once, you can continue rolling the dice.
You might get a three and a four in your first roll. You did
not win, but you keep going. On your 100th try you get two
sixes and win. Everyone will win this game eventually. The
probability of winning after an infinite number of rolls is 1.
Even after just 100 rolls the chances of winning are over 94%.
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Similar to others [9], we argue that the same thing happens
when performing visual comparisons, but instead of winning,
an analyst “loses” when they observe an interesting-looking
random event (e.g., two sixes). Instead of being rewarded for
persistence, an analyst increases their chances of losing by
viewing more data visualizations. This concept is formally
known as the multiple comparisons problem (MCP) [5]. Con-
sider an analyst looking at a completely random dataset. As
more comparisons are made, the probability rapidly increases
of encountering interesting-looking (e.g., data trend, unex-
pected distribution, etc.), but still random events. Treating
such inevitable patterns as insights is a false discovery (Type I
error) and the analyst “loses” if they act on such false insights.

Unlike the above random data example, empirical datasets are
an unknown weighted product of noise and signal and thus
not totally random. The data analyst’s “game” is to detect
data patterns that are real and ignore those that are spurious.
Unfortunately, the difference between the two may be small
or non-existent. Thus an analyst also “loses” by ignoring a
real pattern because it looks uninteresting. This is known as a
false omission (Type II error). False discoveries and omissions
might be rare, but, due to the MCP, they are increasingly likely
to occur as analysts look at more visualizations.

To further demonstrate MCP in exploratory visualization, we
present a representative random data scenario; we consider
non-random data in our experiments (§Experimental Method).

Jean works at a small non profit organization. Every year they
send their donors a small thank-you gift and want to repeat
that this year. From past experience, the organization knows
that only half of all new donors become recurring donors. Jean
suspects there might be a relationship between retention rate
and thank-you gift type. Maybe better-liked gifts trigger repeat
donations. Jean uses his favorite visualization tool to explore
data from the last 10 years. He first looks at the 2006 data
and sees that slightly less than half of the new donors donated
again (Figure 1 (a)). Then Jean inspects the 2007 data and
sees the same result (Figure 1 (b)). After scanning through all
the other years and coming to similar conclusions, Jean looks
at 2016 (Figure 1 (c)). Instantly he sees that this visualization
is much different than the others, depicting a noticeable shift
toward more repeat-donors. Jean gets excited. He believes
he has figured out a way to improve the donor retention rate.
People liked the USB-drive his company sent out that year so
much that they stayed loyal to the organization. Even though



 

(a) 2006: pen ($4)
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(b) 2007 key chain ($2)
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(c) 2016: USB drive ($4)

true false
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Figure 1. A user inspects several graphs and wrongly flags (c) as an
insight because it looks different than (a) and (b). All were generated
from the same uniform distribution and are the “same”. By viewing lots
of visualizations, the chances increase of seeing an apparent insight that
is actually the product of random noise.

this gift is the most expensive one, it is worth it to send it again
this year. Long term donors bring in a lot of money.

Is Jean’s insight correct? It is not. The dataset Jean looked at
was sampled from a uniform distribution. It was completely
random. We controlled the process that generated this dataset
and there was no signal that related gifts to donor retention
rate in any form. Jean’s false discovery led to a spurious
insight. By doing ten comparisons he increased the likelihood
of finding a seemingly interesting pattern in random data.

There are various common approaches for following up Jean’s
exploratory analysis with statistical analysis, each with differ-
ent trade-offs. We introduce these via co-workers with whom
Jean shares his insight: Noemi (confirmation; same dataset),
Hasan (confirmation; validation dataset) and Kendra (mixing
exploration and confirmation).

Noemi transforms Jean’s insight into something statistically
testable. She defines a null hypothesis: becoming a repeat-
donor is just as likely as being a onetime-donor. She tests if
the 2016 data rejects this. The p-value turns out to be 0.028
indicating a significant effect (for a significance level of 0.05).
Noemi arrives at the same, wrong, conclusion as Jean. By
confirming a hypothesis on the same dataset that has informed
that hypothesis, she introduced systemic bias.

Like Noemi, Hasan converts Jean’s insight into a statistical
hypothesis but tells Jean it’s unsafe to test on the same dataset.
They agree to send the USB-drive again this year and re-run
the test after obtaining new retention data. The test comes out
as not significant, refuting Jean’s initial insight. Hasan got it
right. Running confirmatory analysis on a validation dataset is
statistically sound. However, obtaining new data is, in practice,
often expensive, time-consuming or even impossible.

Kendra takes yet a different approach. She suspects that Jean
probably did several visual comparisons prior to reporting his
insight, all of which need to be incorporated in any confir-
matory analysis done on the same dataset to avoid multiple
hypotheses errors. She asks Jean to meticulously recount what
he did and maps all of Jean’s visual comparisons to equiva-
lent statistical hypotheses. Jean made ten comparisons: one
explicit for 2016, and nine implicit, unreported, ones for the
years 2006 - 2015. Kendra runs statistical tests on the orig-
inal dataset using the Benjamini-Hochberg [6] procedure to
control for such a multiple comparisons scenario. The cor-
rected p-value for 2016 equals 0.306. Kendra deems the test
insignificant and informs Jean that his insight is likely due to

random noise in the data. While Kendra’s approach (mixing
exploration and confirmation) requires Jean to remember his
visual analysis session in detail, it also allows for statistically
valid confirmation of his findings using the same dataset.

This paper presents an experiment that quantifies the accuracy
of user reported insights, where we define insights as observa-
tions, hypotheses and generalizations directly extracted from
data. We acknowledge this definition is narrow. Insights from
visualizations can be much broader and multifaceted. Visu-
alizations help users gain a deep understanding of a problem
domain. However, we purposefully limit insights to this subset
because there is no ambiguity of what correctness means. Us-
ing synthetic datasets with known ground truth labels, we can
assign a binary score to each insight: true or false. We then
compute an accuracy score for each participant by dividing
the count of correct insights by the number of all insights.

We follow up by manually mapping insights to corresponding
statistical tests and evaluate the three different confirmatory
approaches just illustrated. We discuss how an approach that
validates user insights on the same dataset as used during
exploration inflates the false discovery rate due to the MCP.
We show that these errors are dramatically reduced by vali-
dating on a separate dataset. Finally, we demonstrate that by
accounting for all visual comparisons done by a user during
exploration, the approach of mixing exploration and confirma-
tion, can achieve similar results to using a separate dataset.

WHY THE VISUALIZATION COMMUNITY SHOULD CARE
In theory, there is a clear divide between exploratory and
confirmatory data analysis methods [47]. The goal of the
former is to browse through data letting visualizations trigger
potential insights and hypotheses. The latter extends this
process with a directed search intended to confirm or reject
insights and hypotheses given a priori [46]. Within this realm,
mistakes are acceptable in the exploratory phase because it is
expected that the confirmatory phase will correct them.

In practice, however, the distinction between the two methods
can be blurry. Oftentimes users will unwittingly switch be-
tween the two and “convert results from investigative analysis
into evidence” [31]. There are also pitfalls associated with this
approach that are unobvious to non-statisticians; for example
doing confirmatory data analysis on the same dataset as the
exploratory analysis introduces systemic bias known as data
dredging or p-hacking [28]. While splitting a dataset into
exploratory and confirmatory parts gets around that problem,
it significantly lowers the power of any test due to smaller
sample sizes. And without using advanced controlling proce-
dures for multiple hypotheses error that allow for incremen-
tal testing [54], iterative switching between exploration and
confirmation can not be done. Standard procedures such as
Bonferroni [16] can only be applied once per dataset.

The blurring of the lines between exploratory and confirma-
tory analysis is arguably magnified by how both commercial
visualization systems and research prototypes are advertised:
“...uncover hidden insights on the fly...”, “...harnesses people’s
natural ability to spot visual patterns quickly, revealing every-
day opportunities and eureka moments alike...” [44], “...no



expertise required..” [45], ”...an interactive data exploration
system tailored towards “fast-forwarding” to desired trends,
patterns, or insights, without much effort from the user...” [42].
We believe that such statements instill a false sense of con-
fidence and reliability in insights derived from exploratory
visual analysis. This might be especially true for tools that
target data enthusiasts - people who are “not mathematicians
or programmers, and only know a bit of statistics” [27].

RELATED WORK
We relate and compare our work to prior art in the areas of
Insight-based Evaluation, Visual Inference and Randomness
and Multiple Comparisons Problem in Statistics.

Insight-based Evaluation
Many have argued that information visualization’s primary
goal is to provide insights [10, 37, 11], and, unsurprisingly,
the visualization community has increasingly adopted insight-
based evaluation methods [35, 23, 26, 52, 40]. Beyond mea-
suring directly how well systems achieve this main goal, these
methods also allow for ecologically valid design comparisons.
Plaisant argues [38] that evaluation methods should estimate
not only how efficiently a new technique reveals trends or
phenomena from data, but also the potential risk for errors.
Insight-based evaluation methods clearly address the former
but largely ignore the latter. Among other risks for misinter-
pretations [8], visualizations are subjective and can be mis-
leading [48]. Users may perceive a visual feature even though
it arises from random data noise; the risk for this increases
proportionately with the number of visualizations inspected.

Van Wijk [48] introduces an economic model that equates the
investments associated with a visualization (e.g., initial cost
to create a visualization, perception and exploration costs)
with the return on those investments (i.e., the total knowledge
gained by a user). We want techniques that optimize this model
for low cost and high investment return. Usability studies and
controlled experiments on benchmark tasks help us understand
the cost of a particular design, and insight-based evaluations
attempt to assess the other side of this equation. However, mea-
suring the number of insights without any quality weighting
paints an incomplete picture and has been mentioned specifi-
cally as a limitation of such study designs [52].

Several proxy metrics have been proposed, for example, in-
sight “value” as assessed by domain experts [40] or “originalty”
scores (how often the same insight was reported). We augment
this work with an experimental method based on synthetic
datasets that assigns each insight a binary quality score: true
or false. Our definition of insights is comparatively narrow
[37, 11] and only encompasses observations, hypotheses and
generalizations directly related to the data and not on any other
sources such as prior knowledge or domain expertise.

Visual Inference and Randomness
Buja et al. [9] outline the parallelism between quantitative
testing and visual analysis and argue that the term “discovery”
(or insight) in visual analysis can often be equated to “rejec-
tion of a null hypothesis”. Seeing an interesting upward trend
in a visualization, for example, can be taken as a rejection of
uniformity. Our study leverages this notion as we manually

extract null hypotheses from user reported insights. Follow-up
work [36] indicates visual inference can perform comparably
to quantitative testing under certain protocols. Similarly, there
is a large body of work in visualization and graphical percep-
tion covering individual value estimation [12], correlation [39,
34], searching [24] or regression [13]. The consensus is that
user inferences are accurate given a task appropriate visual-
ization. However, none of this work analyzes if or how MCP
affects visual inference when comparisons are done in series.

People are known to judge randomness inaccurately [33, 25]
and see patterns where there are none [29]. Well-known illus-
trations include: gambler’s fallacy [43], Hot-hand fallacy [3]
or Birthday paradox. The “Rorschach protocol” [9, 50] can be
used to test people’s tendency to see patterns in random data.

We consider the interplay between visual inference and judg-
ment of randomness. Gambler’s fallacy is famously known
in the game of roulette where people might misinterpret a
streak of 20 reds in a row as a pattern. Humans are good at
spotting such patterns but are bad at judging that this outcome
is not more or less uncommon than any other red and black
sequence of the same length. Data exploration allows users
to browse a large number of visualizations quickly especially
when using automatic visualization recommendation systems
[49, 41]. While scanning through lots of visualizations we
might find one with an interesting pattern without considering
it could be the artifact of random noise.

Multiple Comparisons Problem in Statistics
Formally, MCP occurs when the risk of observing a falsely
significant result increases as more than one hypothesis is
considered at once. This phenomenon is also known as the
multiple hypotheses error, data dredging or p-hacking [5].
Suppose we are looking for indicators in a census dataset that
affects salary distribution. To examine factors such as “age”
or “education”, we set up the corresponding null hypothesis
that states the proposed attribute has no correlation with the
salary distribution. We then use a statistical test to infer the
likelihood of observing a likewise spurious correlation under
the null hypothesis. If this likelihood, commonly referred to as
the p-value, is lower than the chosen significance level such as
0.05, then the null hypothesis is rejected, and the alternative
hypothesis that the proposed attribute is correlated with salary
is deemed statistically significant.

However, if we keep searching through different indicators
in the dataset, we are almost guaranteed to find a statistically
significant correlation. For example, choosing a significance
level for each test of 0.05 means that statistically we have a
5% chance of falsely rejecting a given null hypothesis; even
if the dataset contains completely random data, we would, on
average, falsely discover a spurious correlation that passes our
significance level after only 20 hypothesis tests.

Several techniques exist to control for multiple hypotheses
error. Procedures such as Bonferroni [16] control for family-
wise error rate (FWER), which is the probability of incurring
any false discovery given the hypotheses. For the previous
example, Bonferroni can reduce the FWER from 100% to just
5%. FWER procedures in general provide the safest control.



The downside of FWER procedures is their statistical power
decreases as the number of hypotheses increase to compensate
for the risk of making any error. In situations where false dis-
covery is costly, such as medical trials, FWER may be appro-
priate. However, common data science applications are often
more concerned with the accuracy of observed significant re-
sults than the possibility of an error. Thus false discovery rate
(FDR) is proposed as an alternative control target which speci-
fies the expected proportion of false discoveries among only
the discoveries made (i.e. the rejected null hypotheses), in-
stead of all the hypotheses examined. An FDR procedure such
as Benjamini-Hochberg [6] bounds the ratio of false rejections
among only the rejected tests to be say 5%. In general FDR
is a weaker guarantee than FWER but has shown tremendous
benefit for discovering truly significant insights. Recent work
on FDR and its variants such as the marginal FDR (mFDR)
improves over Benjamini-Hochberg for dynamic settings [19]
and specifically interactive data exploration [54].

MCP is also manifest as overfitting in data mining and machine
learning. Common practice is to train models on one dataset
and then evaluate them on an independent validation dataset.
However the validation dataset is not easily reusable because
of conflation with multiple hypotheses error. Recent work
borrowing from Differential Privacy [17] reuses the hold-out
dataset in adaptive data analysis.

In summary, MCP is well covered in statistics but very much
overlooked in the visualization community. Oftentimes we
compare a mental model of what interests us against the vi-
sualizations we observe. If these models align, we notice
it. Perhaps unconsciously, we are doing comparisons. While
these comparisons are not well-expressed mathematically, they
still are tests and subject to the same MCP as statistical tests.

EXPERIMENTAL METHOD
The aim of this work is to investigate the effect of MCP in
visual analysis. To achieve this, we need to evaluate the ac-
curacy of user reported insights. We designed an experiment
where an insight is an observation, hypothesis or generaliza-
tion that could be directly extracted from the data and that did
not require prior knowledge or domain expertise. Our study
followed an open-ended protocol where we let participants
explore a synthetic dataset and instructed them to report their
reliable insights by writing them down. We believe this work-
flow models common real-world data exploration scenarios
where users report interesting observations to discuss later
with colleagues, to draw a conclusion or take an action, to
analyze further or to convert into a publication. By using
synthetic datasets generated from mathematical models we
control, we can match ground truth labels to user observations
and label each reported insight as being true or false. We use a
full-factorial 2 dataset-types (shopping and sleep) × 2 dataset-
sizes (300 and 1000 records) experiment. The remainder of
this section describes the details of our experimental design.

System
The data exploration tool used in our study derives from Viz-
dom [14] and PanoramicData [53]. Figure 2 shows a screen-
shot. As with Tableau [44], users access dataset attributes from

a list (a) and use drag and drop to create and modify visualiza-
tions (b, d). Our system supports two binned visualizations
types: heat-maps (c) and bar-charts (d). Selecting bars or bins
in visualizations reveals their raw data values. Brushing (e),
filtering (f) and note-taking (g) operations are also available.

Datasets
Our experiment uses three dataset-types from different do-
mains. A dataset-type specifies the attributes and value ranges
the data consist of. The first dataset-type (shopping) contained
customer information from a fictional shopping website. This
dataset-type contained 12 attributes (4 quantitative, 3 nominal,
5 ordinal), and included information like ages of customers,
incomes, region customers are from, average purchase amount
per month and average minutes they spend on the site. The sec-
ond one (sleep) consisted of data from a fictional study about
people’s sleep patterns and contains 10 attributes (5 quantita-
tive, 1 nominal, 4 ordinal). Some example attributes include
average hours of sleep, time to fall asleep, sleep tracker usage,
fitness and stress levels. The third dataset-type (restaurants),
used only to introduce participants to the system, contained
ratings and attributes from restaurants of four different cities.

From these dataset-types we generated actual datasets of two
different sizes: 1000 and 300 entries. The first size is derived
from the fact that roughly half the datasets found on a popu-
lar website collecting machine learning-related datasets [30]
have less than a 1000 records. The second size originates
from Anthoine et al. [2] which analyzed 114 recent medical
publications and found that the median sample size of studies
in those publications was 207. While there are many others,
these models, we believe, represent two common scenarios
for visual data exploration and analysis: a user wants to draw
conclusions from a study or a user wants to explore a dataset
to inform feature selection for a machine learning task.

Our scheme for synthetic data generation is similar to [1]
and addresses several challenges. First, in order to convey a
realistic context to the user, the generated data should retain
the domain-specific properties of the empirical distributions.
For example, the synthetic sample of “age” should not be
negative, and the sample mean should be within reasonable
range. To this end, we extract the domain-specific parameters
from empirical sample datasets to generate synthetic data.

Second, to assess insight accuracy, we need to embed ground
truth labels in the dataset. To simulate real-world scenarios,
our generated datasets must be a mix of signal and noise; how-
ever, we need to know definitively if a user insight is correct.
To inform how to construct such datasets, we ran a six partic-
ipant pilot study using the same tool on real-world datasets.
Analyzing user-recorded insights, we found that most con-
cerned distribution characteristics and relationships among
attributes. Distribution characteristics include “the mean of
age distribution is between 20 and 30” whereas attribute rela-
tionships range from “the income and the age are correlated”
to “the people of age between 40 to 50 work the most”.

To create a synthetic dataset we construct a model based on
multiple bivariate normal random variables where the ground
truth of both types of insights can be determined. For an n-
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Figure 2. Screenshot of the visual analysis tool used in our study. The tool features an unbounded, pannable 2D canvas where visualizations can be laid
out freely. The lefthand side of the screen gives access to all the attributes of the dataset (a). These attributes can be dragged and dropped on the canvas
to create visualizations such as (b). Users can modify visualizations by dropping additional attributes onto an axis (c) or by clicking on axis labels to
change aggregation functions (d). The tool supports brushing (e) and filtering (f) operations. Where filtering operations can be arbitrarily long chains
of Boolean operators (AND, OR, NOT). The system offers a simple textual note-taking tool (g).

attribute dataset, we embed n/2 true relationships as correlated
attribute pairs. Pairs are chosen randomly and given a random-
ized, non-zero correlation coefficient between -1 and 1. We
then generate data by sampling from bivariate normal random
variables, parameterized by these correlation coefficients and
with means and variances extracted from empirical datasets.
This process is repeated for each participant in our study.

If two attributes are sampled from independent normal random
variables, then any insight involving the relationship between
these two attributes is false. For two correlated variables, any
simple insight is true. For more complex insights (e.g., state-
ments about a sub-population mean like “the average age of
married people is 35 to 40”), the ground truth can be calculated
either analytically or computationally. Due to the truncation
of the random variables for empirical domains, the analytical
computation of ground truths for correlated attributes is com-
plicated [51]. Instead, we generate datasets with 100M records
from the same model and extract ground truth labels using
hypothesis testing with Bonferroni correction [16]; labels are
generated with 95% confidence.1

Procedure
We recruited 28 participants from a research university in the
US. All participants were students (25 undergraduate, 3 gradu-
ate), all of whom had some experience with data exploration or
analysis tools (e.g., Tableau, Pandas, R) and have taken at least
introductory college-level statistics and probability classes.
Our experiment included dataset-type (shopping and sleep)
and dataset-size (300 and 1000 records) as between-subject
factors. Each participant got to see one pairing of dataset-
type and dataset- size. The study design was fully balanced -
each unique combination of dataset-type and dataset-size was
1The code used in this study to generate synthetic datasets and run em-
pirical tests can be found at https://github.com/zheguang/macau.

given to 7 participants. The actual dataset records and cor-
relations were generated uniquely for each participant using
different random seeds and according to the method outlined
in §Datasets. Even if two users saw the same combination of
dataset-type and dataset-size they still got a unique dataset in
terms of the individual values of attributes and ground truths.

Each participant session had three parts. The first consisted
of a 15 minute tutorial on how to interact with the system
using a separate third dataset-type (restaurant). We showed
participants all relevant tool features and answered questions.

In the second part, participants read a handout describing the
dataset and instructions about the scenario. These instructions
mentioned that the datasets were “a small but representative
sample” and that they should find and report “any reliable
observations” that could be used to understand the “site’s cus-
tomer population” or “patient’s sleeping patterns” or could be
used to improve “customer growth” or provide “sleep recom-
mendations”. The handout stated that participants should write
down textual descriptions (using the system’s note-taking tool)
about observations they want to report. After clearing up poten-
tial questions about the instructions, participants were given up
to 15 minutes to analyze the dataset at their own pace. At any
time, participants who felt they exhausted the use case could
stop. During this second part, we instructed users to think-
aloud [18] and we captured screen and audio-recordings and
eye-tracking data. An experimenter was present throughout
all of the session, and users were encouraged to ask technical
questions or questions about the definition of dataset attributes.

In the third part, the experimenter and participant re-watched
video recordings of the session together (with overlaid eye-
tracking data). This was an involved process where the exam-
iner paused playback at every interaction, instructed users to
explain their thought process, re-wound if necessary and let

https://github.com/zheguang/macau


participants recount which parts of visualizations they were
observing (reinforced by the eye-tracking data) and what vi-
sual features they had been looking for. The examiner asked
detailed questions about the above points if needed. In a post-
session questionnaire, participants ranked their background
in statistics, familiarity with statistical hypothesis testing, and
experience interpreting visualizations on a 5-point Likert scale.

ACCURACY OF USER INSIGHTS
For our analysis, we considered all insights reported by users
through the tool’s note-taking feature with a few noted excep-
tions. We excluded insights that were based on prior knowl-
edge or personal experience, that were not directly observable
from the dataset, that were based on reading numbers and in no
way made a broader statement applicable to a larger population
or that misintepreted the visual display. Examples of excluded
insights include: “Users wealthy on average compared to me-
dian income in the US”, “design: 399 red, 329 green, 195
yellow, the rest blue” or “Between stress level and average
age, the people with stress level 5 tend to be the oldest at 40
among females” (the participant thought they were filtering
to only females but in fact did not). In total, we excluded six
insights from five participants. We were left with an average
of 5.536±2.742 insights2 per participant (n = 28).

Since the datasets used in this study were generated syntheti-
cally, each user-reported insight had a known boolean ground
truth label. For example, we know whether the insight “age
is correlated with purchase amount” is true since the model
generating the dataset contains this information. If age and
purchase amount are sampled from independent normal ran-
dom variables, this insight is false. If the two variables are
correlated, it is true. For roughly 70% of the insights, ground
truth labels were extracted analytically by inspecting variable
relationship in the dataset-models. For the remainder (e.g.,
statements about means like “the average age of people is
between 35 and 40”), we used empirical methods as described
(§Datasets). For example, if a user made 10 observations, on
average, we generated ground truth labels empirically for 3 of
those under Bonferroni correction (over only those 3 insights)
on larger datasets.

We modeled this experiment as a binary classification prob-
lem and borrow standard techniques and metrics from the
machine learning community to evaluate the results. For each
insight, a user, depending on how it was reported, either made
a positive observation (“Age and purchases look correlated”)
or a negative one (“There is no correlation between age and
purchases”). We summarize the accuracy of a user’s insights
in a confusion matrix where an insight falls into one of four
categories: True positive (TP): the user insight is a positive
observation and the ground truth agrees, false positive (Type
I error, FP): user insight is positive but the ground truth says
otherwise, true negative (TN): user insight is negative and the
ground truth agrees and finally false negative (Type II error,
FN): user insight is negative and the ground truth disagrees.
The insight “There is no correlation between age and purchase
amount,” for example, would fall into the FN category if in

2Averages appear with the standard deviation as the second number.

our dataset-model the age and purchase amount values were
sampled from two correlated random variables.

We report the following averages: T P = 1.000±1.217, FP =
3.250±2.287, T N = 1.250±1.404 and FN = 0.036±0.189.
Additionally, we computed the following per-user metrics:

Accuracy (ACC) = (T P+T N)/(T P+T N +FP+FN)

False discovery rate (FDR) = FP/(T P+FP)
False omission rate (FOR) = FN/(T N +FN)

Where ACC measures the overall accuracy (the percentage
of times users’ insights were correct), FDR the percentage of
times users reported an insight as positive (“age and purchase
amount is correlated”) but it turned out not to be true and FOR
the percentage of times users reported an insight as negative
(“there is no relation between age and purchase amount”)
but it turned out not to be true. ACC summarizes overall
performance, whereas FDR and FOR give a more detailed
view about where mistakes where made. We found that the
average ACC across all users is 0.375± 0.297, the average
FDR is 0.738±0.296 and the average FOR is 0.018±0.094.

Our study featured a full-factorial 2 dataset-types (shopping
and sleep) × 2 dataset-sizes (300 and 1000 records) study
design. We applied an analysis of variance test (ANOVA) with
dataset-type and dataset-size as the between-subject factors.
We found that dataset-type as well as dataset-size had no
significant effect on accuracy (p = 0.792,η2 = 0.003 and p =
0.091,η2 = 0.109 respectively, α = 0.05).

CONFIRMATORY STATISTICAL HYPOTHESIS TESTING
The results of our study show that for our synthetic datasets
and the particular tool we used, over 60% of user reported
insights were wrong. Results from visual analysis are often
considered exploratory. They need to be confirmed in a second
phase. In fact, roughly a fourth of our study participants
mentioned at one point or another that they would want to
verify a reported insight through statistical testing. In this
section, we report on an experiment where we validated user
insights through different confirmatory analysis approaches.

The approaches we used included confirmation; same dataset
and confirmation; validation dataset. Confirmation; same
dataset models an approach where statisical analysis is done
on the same dataset used in the exploration phase. Confir-
mation; validation dataset follows Tukey’s model [47] of
conducting exploratory and confirmatory data analysis on two
separate datasets; for this we generated a new dataset of the
same size and with the same parameters (i.e., random vari-
ables have the same mean and variance and the correlation
coefficients between variables are the same) as used during
exploration. For both approaches, we use the Benjamini and
Hochberg procedure [6] to correct for multiple hypotheses.

From Insights to Statistical Tests
To perform this experiment, we converted user insights into
testable statistical hypotheses via multiple steps. We first
created an encoding scheme based on insight classes. Insights
were coded as instances of these classes. An insight became
an object where its type and necessary properties were defined



by its class. We then defined null hypotheses and testing
procedures for each insight class. To transform insights into
testable hypotheses: the insight class indicates the statistical
test to use and the properties of the encoding inform that test’s
input parameters. The following sections explain these steps.

Insight Classes
Our goal was to find a classification model with the fewest
classes that could still accurately describe all insights gathered
in our study. We employed a process where we first generated
candidate classes which we then iteratively refined. In this
process we considered all available data from our user study.
This includes the video, audio and eye-tracking recordings,
the textual description of insights provided users, as well as
participant commentary that we gathered when re-watching
session videos with the participants.

We arrived at a system that encompasses five insight classes:
shape, mean, variance, correlation and ranking. Mean and
variance described insights with direct statements about the
means or variances of distributions. Correlation considered
all insights where a relationship between two variables was
established. Shape covered observations about the shape of
one or more distributions, and, finally, ranking included obser-
vations about sub-population rankings or orderings. Each class
of insight defined several properties that fully described its
class instances, such as which attributes were involved, which
sub-populations were getting compared, whether parts of the
data were filtered out and what comparison were being made
(e.g., is something smaller or bigger than something else).

Coding
We describe our 155 insights as instances of their corre-
sponding classes. On average per participant we encoded
1.250±1.404 correlation, 2.786±2.347 mean, 1.143±1.860
ranking, 0.821±1.517 shape and 0.107±0.315 variance in-
sights. Following Liu et al. [35], the first author did the major-
ity of the coding, revising it with co-authors to reduce bias.

Figure 3 illustrates examples of user reported insights from
our study. It shows the visual display that triggered an insight
alongside the textual description provided by participants and
the corresponding insight class, with its properties, that en-
coded the insight. Note that we again relied heavily on the
commentaries made in our post-session video review with the
participants, as well as our recorded eye-tracking data. Figure
3 (c) depicts an instance where the user’s statement alone did
not make the mapping to an insight class obvious; however,
post-session commentary and eye-tracking data resolved this.

Mapping Insight Classes to Null Hypotheses
We now need to convert insights we encoded as class instances
into testable hypotheses. For each insight class, we define
a general null hypothesis pattern that we can fill out with
specifics from the actual insight. For example, the null hypoth-
esis pattern for the mean class is E[X ] = E[Y ], so an insight
that “the average age is 50” would populate this pattern as:
H0 : E[age] = 50. Table 1 shows all null hypotheses patterns.

There are certain ambiguities in these translations from in-
sights to hypothesis. For instance in the above example, the

histogram bin for age 50 was the highest but the bin width
was 5. So the user was more likely to imply that the popula-
tion mean was around but not exactly 50. We modified null
hypotheses in such cases to account for this level of ambiguity
by adding an interval of 10% around the hypothesized mean.
Another drawback of this null hypothesis mapping is that we
need the null hypothesis to be testable. For example, if the
user insight specifies a certain order of the age groups, then
conceptually we should test against all other possible orders.
However, this null hypothesis is very hard to test statistically.
Thus, we chose uniformity as the null hypothesis, meaning no
particular order in all the age groups. In general, we resolve
ambiguities by erring on the side of users by choosing more re-
laxed null hypotheses where statistical results are more likely
to “agree” with user judgment.

For each null hypothesis pattern we define a corresponding
Monte Carlo permutation or bootstrap test. We chose resam-
pling for hypothesis testing because it offers several advan-
tages over the parametric testing such as the t-test and the
χ2-test. First, randomization tests do not assume the distri-
butions of the test statistics [15]. Moreover, some parametric
tests such as the χ2-test require samples to be large enough to
make accurate inferences [7]. However, many user insights
were based on skewed data or highly selective filters, and
hence might not always meet the sample size requirement.

In general, the Monte Carlo permutation or bootstrap tests
share a common computational form of resampling [15]. First
a test statistic is determined based on the hypothesis. Then
the data is permuted or bootstrapped to obtain the distribution
of the test statistic under the null hypothesis. Finally the
proportion of the test statistics in permutations that are more
extreme than in the user observation forms the estimated p-
value, p̂. To determine how many permutations, n, we needed
for a sufficiently accurate estimate, we used the Central Limit
Theorem to derive the 95% confidence interval [7]:

p̂±1.96
√

p̂(1− p̂)/n

With enough permutations, we get a non-overlapping interval
p̂ for significance α , following the decision rule to reject the
null hypothesis if it is not greater than α . We summarize the
details of the randomization tests in Table 1.

Analysis
Using the above procedure, we mapped all insights to hy-
potheses tests. Depending on the confirmatory approach, we
computed test results on either the same dataset shown to users
(confirmation; same dataset) or a newly generated validation
dataset (confirmation; validation dataset). We again modeled
this experiment as a binary classification problem. Statistical
significance (α = 0.05) provided positive or negative insight
predictions which were then evaluated against ground truth la-
bels. Figure 4 reports experimental results including individual
datapoints, means and 95% confidence intervals.

MIXING EXPLORATION AND CONFIRMATION
The two confirmatory analysis approaches outlined and com-
pared in the previous section have their drawbacks. For ex-
ample, while confirmation; validation dataset is statistically



(a) "People over the age of 55 seem to sleep, on average, less than younger people."

{
 "dimension": "hours_of_sleep",
 "dist_alt": "75 < age >= 55",
 "dist_null": "55 < age >= 15",
 "comparison": "mean_smaller"
}

(c) "Most purchases/month: 30-35 year olds"

{
  "dimension": "age",
  "bucket_width": 5,
  "bucket_ref": 15,
  "bucket_agg": "count",
  "dist_alt": "5 < purchases >= 3.5",
  "dist_null": "",
  "comparison": "shape_different"
}

(b) "If we filter by people with high stress and who work >60 hrs per week, they quality of sleep is slightly less than the 
general population and the standard deviation of the distribution is less. "

(e) "Hours of sleep does not vary based on fitness level".

{
  "dimension": "hours_of_sleep,
                fitness_level",
  "comparison": "not_corr"
}

(d) "Sig. more people sleep between 7-8 hours, followed by 8-9, then 9-10"

{
  "dimension": "hours_of_sleep",
  "filter": "",
  "target_buckets": "8 < hours_of_sleep >= 7, 
                     9 < hours_of_sleep >= 8, 
                     10 < hours_of_sleep > 9",
  "comparison": "rank_buckets_count"
}

 

{
  "dimension": "quality_of_sleep",
  "dist_alt": "120 < work_per_week >=60 and 
               6 < stress_level >= 3",
  "dist_null": "",
  "comparison": "variance_smaller"
}

Figure 3. Examples of user reported insights from our study. The figure shows the visual display that triggered an insight alongside the textual
description participants reported and the corresponding insight class with its properties we encoded it to. (a) An example of a mean insight. The user
directly mentions that he is making a statement about averages. We encode the dimension that we are comparing across (“hours of sleep”), the two
sub-populations that are being compared (“75 < age >= 55” and “55 < age >= 15”) as well as the type of comparison (“mean_smaller”). (b) Our user
compares the standard deviation of the two “quality of sleep” charts. We encode this as a variance insight. We again describe this instance fully by
recording the dimension involved, the sub-populations compared and the type of comparison being made. (c) Example of a shape class insight. From the
user statement alone, it was not obvious to which class this insight corresponded. However, in the post-session video review, the participant mentioned
that she was “looking for changes in age distribution for different purchases” and that she observed a change in the shape of the age distribution when
filtering down to high purchase numbers. This was reinforced by analyzing the eye-tracking data of the session. The participant selected bars in the
“purchases” histogram and then scanned back and forth along the distribution of the filtered “age” visualization and the unfiltered one. (d) An example
of an insight where a ranking among parts of the visualization was established. (e) The user created a visualization with two attributes. The y-axis was
mapped to display the average “fitness level”. Our user notes report insights that discuss the relationship of the two attributes. We classified this as a
correlation insight.

Insight Class Null Hypothesis Permutation π Test Statistic
Mean E[X ] = E[Y ] X ∪Y |µX −µY |

Variance var(X) = var(Y ) X ∪Y |σ 2
X −σ 2

Y |
Shape P(X |Y = y1) = P(Z|Y = y2) Y ‖P(X |Y = y1)−P(Z|Y = y2)‖

Correlation X ⊥ Y X |ρ(X ,Y )|

Ranking X ∼Uni f (a,b) π ∼Uni f (a,b)

{
1 rank(Xπ ) = rank(Xobs)

0 else.

Table 1. Summary of randomization hypothesis tests to which insights are mapped to for confirmatory analysis. The random variables represent
attributes with arbitrary conditions from the dataset.
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Figure 4. Plot with average scores, where the second number is the standard deviation, and rendered 95% confidence intervals for accuracy (ACC), false
omission rate (FOR) and false discovery rate (FDR) for users and different confirmatory approaches. Overlaid are all individual datapoints (n = 28).



sound, it requires users to collect additional data which is often
unfeasible in practice. Data collection might be expensive, as
is the case for user studies, medical trials or crowd-sourcing,
or might be done by an outside provider over which the user
has no control. Splitting a dataset into exploratory and con-
firmatory parts significantly lowers the power of comparison
done on either part due to smaller sample sizes. Perhaps more
problematic, confirmation; same dataset can lead to inherent
systematic bias because we are statistically testing insights on
the same data that initially informed them.

We want to compare these approaches to one we call mixing
exploration and confirmation. So far we have only analyzed
users reported insights. We call these explicit insights. How-
ever, during an exploration session, users might have made a
significant number of along-the-way comparisons that did not
trigger insights. The reasons for these could be manifold. The
comparisons may have involved uninteresting visualizations,
confirmed an assumption the user already held or just been
inconclusive. Regardless, the result of such a comparison is
still a type of insight: that the result of the comparison was not
interesting enough to be reported. We call these implicit in-
sights. The previous confirmatory approaches ignore implicit
insights completely. With mixing exploration and confirma-
tion we simulate an approach where comparisons that resulted
in either type of insight, explicit or implicit, were incorporated.

Coding
We again considered all data collected from our study: video,
audio and eye-tracking recording and commentary from par-
ticipants. This time we focused on implicit insights where
users made an unreported comparison, likely because it was
uninteresting. We encoded such instances with the same in-
sight classes as before. For example, a user might view “age”
for two different sub-populations; eye-tracking data indicates
visual scanning between the two; the post-session commentary
reveals the user compared the two trends but did not see a
difference. Our coding marks this as an implicit shape insight.

Analysis
Overall we found 620 implicit insights, with 22.143±12.183
average implicit insights per user. Following the previous
procedure, we converted these implicit insights into statistical
tests. We conducted statistical analysis as with the other confir-
matory approaches, but added tests based on implicit insights
to the multiple hypotheses correction procedure (Benjamini
and Hochberg [6]). We used the same p-value cutoff as before
and report the same metrics (see Figure 4).

Note we did not report implicit test accuracy. All metrics
were solely based on explicit insights since we only cared
about their correctness. Consider again the example from the
introduction. Jean made nine implicit and one explicit insights
but only shared the explicit one. Only the accuracy of the
explicit one matters since only it will be acted upon; yet its
accuracy depends on the set of implicit insights.

DISCUSSION
Real-world datasets are weighted compositions of noise and
signal. One goal of visual data analysis is to assist users at

efficiently separating the two. We want visualization systems
where users can maximize their total number of insights while
minimizing false insights. Insight-based methods only com-
pare systems based the former. Analyzing errors requires
quantification of the correctness of insights. For real-world
datasets this is frequently not possible because there is no way
to know which effects are true or not.

In this paper we use a method based on synthetic datasets
where we can classify the correctness of an insight as either
true or false. Our notion of insight is limited to observations,
hypotheses and generalizations directly extracted from the
data. If a user tells us “age” and “hours of sleep” are correlated
we know if that statement is true or not.

For the visualization tool used in our study, over 60% of user
reported insights were found incorrect. However, this error
needs to be interpreted anecdotally. Results may vary greatly
between users, visualizations, tools and datasets. The high
error rate is perhaps unsurprising. Mathematical procedures
might be better suited to make such data-driven inferences
than humans. More surprisingly, when following up user
generated insights with statistical tests on the same dataset, we
are still left with 11% false discoveries (confirmation; same
dataset, Figure 4). Double of what statistics promise when
using a significance level of 5%. This is because we introduced
systemic bias by testing hypotheses on the same dataset that
informed them and hence FDR was inflated due to MCP.

The key takeaway here is that without either confirming user
insights on a validation dataset (confirmation; validation
dataset) or accounting for all comparisons made by users
during exploration (mixing exploration and confirmation) we
have no guarantees on the bounds of the expected number of
false discoveries. This is true regardless which specific visual
analysis tool or visualization is used. Taking action, making
decisions or publishing findings this way becomes risky.

Validating user generated insights with the confirmation; same
dataset approach is not statistically sound and confirmation;
validation dataset requires additional data, which in practice
is often hard to acquire. In our experiments we manually
coded explicit and implicit insights to show the benefits of
mixing exploration and confirmation: it guarantees the same
FDR bounds as confirmation on a validation dataset. However,
burdening users to remember and code all of their insights
during an exploration session is unfeasible. Could we create
tools that automatically do this encoding while users explore
a dataset? We believe that augmenting visual analysis systems
to do this is a promising direction for future research.

User Performance
We next examine several questions about user insights and
performance. Is user accuracy correlated to self-reported ex-
pertise levels in statistical hypothesis testing, interpreting vi-
sualization and general statistical background? Is accuracy
influenced by individual insight support size? Does the study
design pressure users near the end of a session?

We correlated participant accuracy scores with their self-
reported expertise levels. We found that neither background in



statistics (r =−0.258, p = 0.223), their familiarity with statis-
tical hypothesis testing (r =−0.328, p = 0.117) or their expe-
rience with interpreting visualizations (r = 0.005, p = 0.982)
had a significant correlation with accuracy percentages. In
general we focused on novice participants since we believe
that they are a large part of the target audience for visualization
tools. More experiments are needed to assess if our results
generalize to other populations (e.g., statistical experts).

The average normalized support (i.e., the percentage of data-
records involved in an insight) per user was 0.590±0.270 for
correct insights and 0.463±0.282 for incorrect ones. While
the difference is not statistically significant (p = 0.118,d =
0.471) examining this trend in more detail is warranted.

We extracted timestamps of insights and normalized them by
session length. The average normalized time for incorrect and
correct insights is 0.585±0.271 and 0.587±0.248 which is
not a statistically significant difference (p = 0.957,d = 0.009).

Relating to Statistical Theory
Without any hypothesis testing, the false discovery rate aver-
ages over 73% (user, Figure 4). With hypothesis testing on the
same dataset (confirmatory; same dataset) the false discovery
rate reduced somewhat to 11% (Figure 4). With multiple hy-
potheses control only on the explicit insights, the average FDR
inflated above the theoretical bound of 5%. By not controlling
for implicit tests, we are exposed to the multiple hypotheses
error as described in section Multiple Comparisons Problem in
Statistics. Essentially this is a misuse of the control procedure.

With proper multiple hypotheses correction on both implicit
and explicit hypotheses mixing exploration and confirmation
achieved average false discovery rates around 5% (Figure 4).
This can be seen from the theoretical perspective where the
Benjamini and Hochberg procedure [6] guarantees the ex-
pected proportion of false discoveries V among all discoveries
R is upper bounded by a given significance level α = 0.05:

E[‖V‖/‖R‖]≤ 0.05

We achieved a similar false discovery rate with confirma-
tion; validation dataset which tested hypotheses on a separate
dataset. This is akin to replication studies in science.

Statistical procedures only provide bounds on the expected
number of false discoveries. Tightening these bounds will au-
tomatically result in higher false omission rates. Balancing this
trade-off is highly domain specific. In drug trials, false discov-
eries must be avoided, whereas, in security related scenarios,
false omissions can have disastrous effects. Sound statistical
methods, like confirmatory; validation dataset and mixing
exploration and confirmation, facilitate these trade-offs.

Larger Datasets
Theoretically, having complete knowledge of the population
distribution, or infinite resource to sample from it to appeal
to the Law of Large Numbers, could eliminate the risk of
false discovery. However, in many practical cases approxi-
mating this theory is difficult. Fundamentally, many factors
affect the uncertainty of the statistical inference on the data,

including sample sizes, variations, effect sizes, and measure-
ment errors [21]. Thus it requires significant upfront effort
to determine the sample size with enough statistical power
by controlling the other factors. Some factors may be hard
to compute. For example, the space of possible hypotheses
on the data may not be known; users may select and compare
many different data subsets. These aspects also complicate
the notion of having a single sufficiently large data size for
all possible analysis. Yet studies are warranted that explore in
detail the relationship between user accuracy and data size.

Base Rate Fallacy and Other Errors
The psychological tendency to neglect the global base rate
while overestimating by the local, more specific likelihood has
been well studied in Pscyhology and Behavioral and Brain
Sciences [4, 32]. In the context of visual analysis, it would be
interesting to see how user performance changes if users were
informed about the noisiness of the underlying dataset. Inter-
estingly, some statistical testing procedures automatically ap-
proximate data randomness to improve their performance [54].
Our study however excludes this variable by fixing the base
rate of ground truths and not disclosing it to the participants.

Beyond Type I and Type II, other error types have been pro-
posed to quantify the likelihood of mistaking the sign (Type S)
or overestimating the magnitude (Type M) [22, 20]. However
in our study user observations were often vague regarding
these effects. For example, instead of saying “mean A is 45
and less than mean B” participants would typically say “mean
A is different than mean B”. Furthermore, sign and magnitude
do not apply to several types of user insights (e.g., when com-
paring shapes or rankings). For the subset of insights where
users stated directions, we setup one-sided null-hypotheses
which captured sign errors in our FDR calculation. Based on
our experience, a more detailed study of Type S and Type M
errors would likely involve a new study design that invites
the users to be more conscious about making observations on
signs and magnitudes.

CONCLUSION
Comparing a visualization to a mental image is akin to per-
forming a statistical test, thus repeated interpretation of visual-
izations is susceptible to the MCP. In this work we attempted
to empirically characterize this. We presented an experiment
based on synthetically generated datasets that enabled us to as-
sess the correctness of user reported insigths. We showed that
by not accounting for all visual comparisons made during vi-
sual data exploration, false discovery rates will be inflated even
after validating user insights with further statistical testing. We
demonstrated that a confirmatory approach that addresses this
can provide similar statistical guarentees to one that uses a
validation dataset.
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